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SEMICOARSENING AND IMPLICIT SMOOTHERSFOR THE SIMULATION OF A
FLAT PLATE AT YAW*

R(TBENS.NIONTERO_,I(;NA(_ION1.I_I_O[_EN'I'I_Z_ANI):X.IAN(_E[_I). SALAS!_

Abstract. Thispaperpresentsa full multigridsolverfor th(_simulationof flowoverayawedflat plate.
Thetwot)roblemsassociatedwith this simulation;|)oun(lary layers and entering flows with non-aligned

characteristics, have been successfully overcome through the combination of a plane-implicit solver anti

sere|coarsening. In fact, this multigrid algorithm exhibits a textbook multigrid convergence rate, i.e., the

solution of the discrete system of equations is ot)taine(t in a fixed amount of computational work, in(tel)en-

dently of the grid size, grid stretching factor and non-alignment parameter. Also, _ parallel variant of the

smoother based on a four-color ordering of planes is investigated.

Key words, plane implicit smoothers, sere|coarsening, rol)ust multigrid, fiat plate

Subject classification. Applied and Numerical ik'Iathenmtics

1. Introduction. The flow of a viscous fluid over a solid obstacle can 1)e divided into two regions of

interest. A very thin layer close to the surface of the body in which the velocity gradient norlnal to the

surface is very large, and the remaining region where no such gradients occur and the influence of viscosity

can be neglected. It can be shown from several exact solutions of the Navier-Stokes equations that the

thickness of the boundary layer is proportional to the square root of the kinematic viscosity. Hen('(', in the

simulation of high Reynolds number flows, a high density of nodes must be concetltrated near the I)ody

surface to capture the viscous effects numerically.

It is well known that standard multigrid algorithms suffer from a slow-down in convergen(:e in such an

anisotropic situation (see for example [1, 15]). There are two main approaches to deal with these anisotropic

operators. The first approach consists in improving the stnoothing process by using an alternating direction

block-implicit smoother [13]. This algorithm explores all the possible directions of coupling of the varial)les.

On the other hand, the second approach relies on improving tile coarse-grid operator. Algorithms like

selective coarsening [7], flexible multiple sere|coarsening [26] or block implicit relaxation coral)|ned with

sere|coarsening [6], among others, fall into this category. Although these methods have been successfully

applied to fifily elliptic equations [17] and the 2-D Navier-Stokes equations [18, 23] their application to the

Navier-Stokes e(luations in 3-D has been limited.

The simulation analyzed in this work represents an entering flow type with the characteristics entering

through one [>oundary. If the flow does not recirculate, downstream tnarching results in a very efficient solver

for tile convective operator. However, if the main stream velocities are not aligned with the grid lines the

efficiency of tire multigrid method degenerates dramatically. In this case, error ('Oml)onents that are much

smoother in the characteristic direction than in others, are not well al)proximated in coarser grids. The

main reason is the increasing numeri(_al viscosity induced on coarser levels [3, O]. One way to prevent this
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degradation in convergence is to use block lint)licit relaxation combined with semicoarsening [8]. This first

approach has been applied to the 3-D constant coefficient convection equation in [14]. When solving the

Navier-Stokes equations it is also possible to use distributive Gauss-Seidel relaxation (DGS) [3, 22]. The

DGS decouples the elliptic component of the system (solved effectively by nmltigri(t) from the non ellit)tic

one which can be solved through marching.

The two problems involved in tile simulation studied here, namely boun(lary layers and non-aligned

grids with open characteristics, have been pointed out as one of the factors that prevent the achievement

of ()i)timal nmltigrid efficiencies in CFD codes [2]. Optimal convergence is defined as the resohltion of the

governing system of equations in a few (less than ten) work units. A work unit is usually defined as the

time required to compute the residual of the system in the finest grid. This property is defined by Brandt

as Textbook Multi.qrid Efficiency (TME) [1]. Another desirable quality of a multigrid solver is its robustness.

The robustness of a smoother is defined as its ability to efficiently solve a wide range of problems. In this

sense the definition of robustness is qualitative and has to be defined more precisely by setting up a set of

suitable test problenls. In tile present context we will characterize the multigrid algorithms as robust if the

solution of the governing system of equations can t)e attained in a fixed amount of work units independent

of the grid size, grid stretching factor and the non-alignment parameter. We will refer to this t)roperty as

Textbook Multigrid ConveT:qence (TMC).

Tile purpose of this work is to present a multigrid algorithm which achieves textbook convergences for

the sinndation of tile flow over a yawed fiat plate. In order to solve the two problems outlined above we

t)resent in section 3 a FMG-FAS multigrid algorithm based on a plan(, inll)licit smoother combined with

s(,micoarsening. Tlw mnnerical results analyzed in section 4 show that tile algorittun used in this work is

fully rolmst for the model problenl considered. In that section, we will also investigate a four coh)r ordering

of planes which (qmbles the parallel implementation of tile smoother. Tit(, paper ends with some conclusions.

2. Finite Volume Discretization. Let us consider tile dimensionless stead)" state incompressit)le

Navier-Stokes equations:

(u. V)u = -Vp+ R@Au,

(2.1) V • u = 0,

where u E _e :_ = (u, _.,,w) is the non-dimensional velocity field and p is tile dimensionless t)ressure. R_ is

the Reynolds numl)er defined as Rc = _ where U_ is a characteristic velocity L a characteristic length

and u the kinematic viscosity.

The system of non-linear equations 2.1 is discretized over an orthogonally structured grid with a staggered

arrangement of unknowns, where the velocity field is defined on the control volume faces, and the pressure

field at the center (see figure 2.1). The most important issues of the finite volume technique will be briefly

repeated for t tl(, u nmmentum equation. Integration of tile convective terms of 2.1 over a control volume

CI }it gives:

(2.2) u. Vu dl" = _ f0 u(u. n) dS = _mkuk,
'l;jk k ('I'<,k k

k = e,w s,n,t,t);

where n is the outward normal vector to the Cl'ij_. faces, and the indexes c, w .... stand for the usual cardinal

notation (see [10]). As an example, let us consider tile east face. For tile approximation of the u velocity

an upwind biased definition is used the low order or driver operator used to iterate the solution is a pure
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FIG. 2, 1. Placement of the unknowns in the control volume (left-hand chart). Approximation of the. velocity at the surfac_

of the control with the QUICK scheme (right-hand chart).

upwind:

{ 'u_j_. + S + (u. n)_, > 0:(2.3) u,. =
Ili+ljI,. -I- S (U" n)¢, < 0.

where the S ± ternls corresl)onds to the contribution of higher order ot)erator corrections. The S + source

terms are calculated, within the multigrid cycle as explained in section 3, using a second order QUICK [12]

scheme. With QUICK, the veh)city at the surfa(:e of the control vohnne is intert)olated by fitting a parabola

to the values of the velocity at three consecutive nodes: the two nodes h)cated on either side of the surface

of interest, plus the adjacent node in the upstream direction (see figure 2.1). The mass fluxes 7nk can be

easily evaluated using linear weighted interpolation. The rest of the details about the (tiscretization of 2.1

have been discussed in (tetail in [16].

3. The Multigrid Algorithm. The base solver that we have employed in this work is a full multigrid

FMG algorithm [1]. Let us define a set of grids G = {f/t. : k = 0, 1, 2, ..., N} where [_0 is the finest target

grid and the rest of the grids are obtained by at)t)lying some coarsening procedure. In the FMG algorithm

the calculations start on the coarsest grid i_x. Once the problein is solved, the solution is intert)olated to

the next finer level l_-_ 1 to i)rovide a good initial at)t)roximation to the discrete pr()t)lem on that level. This

procedure is repeated until the finest grid l_0 is reached. The main goal of a FMG algorithm is to provide

an approximation it° of the discrete solution u ° up to an algebraic error IIlL° -u°ll which is smaller than the

discretization error ]lu - u°ll.

Because of the non-linearity of the Navier-Stokes equations, each level in the FMG process is solved

with some full approximation scheme (FAS) [1] multigrid cycles. The FAS cycle for a given grid t_, can be

recursively defined as follows; let us consider the non-linear discrete prol)lem on tl,,:

(3.1) L,u" = f'_,

After applying vl iterations of a non-linear smoother to the system 3.1 a new at)proximation _*'_is obtained.

Now, the a pt)roxinmtion '_'_ and the residual r '_ = fn _ L,_" are transfered to the next coarser grid 1_,_+1:

u,_+l = i;:+l_,_;

(3.2) ,.,,+, =/,,+1,.,,,

the restriction ot)erators I;_ +l are discussed below. On the grid t_,,+t the defect equation is solved:

L)z+t_ n+l = rT_+1 + L,_+tun+];



(3.3) iF,, 1 = u,,+l + Au,,+t,

where L,,+I is some coarse-grid approximation to L,,. Note that in the FAS algorithm w(' solve for the

fldl approximation [t''+l rather than for tile correction Au '_+1. Tile appr()ximate solution to the coarse-grid

t)roblenl 3.3 is ol)tained in 3 nmltigrid cycles for the grid f_,,+l- When th(, coarsest l(,vel _x is reached,

the solution to 3.2 is ot)tained by several relaxation sweeps (v0) of the smoothing process. Once the system

3.3 is solved, the correction _'u '_+l is transferred back to tile finer grid [_,_ and added to the fine-grid

approximation:

(3.4) fi'_ +-- fi"+ I_]+1 ('b ;'_+1 --tin+l),

so v2 sweeps of the non-linear smoothing process are applied to the systeni 3.1, using the new solution fi"

as the initial guess. In algorithm 1 a recursive implementation of the FAS cycle is shown.

Algorithm 1 FAS(u_ ,u2,'7,n) multigrid cycle for a given grid ft,,, where ul and u._,denote the number of pre

and post-smoothing iterations. The cycle type is fixed with ?.

if n=N then

fi_'_ = Smooth(Lx, uN, fN, vO)

else

h" = Smooth(L.. u', f'_, u[)

r" +- f" - L,,fi"

1.,'_+1 +._ /]_+lr,,

u,,+l +__I::+lfi ''

ff_+l +__ rn+l + gn+l/l_+l

fori=0to3 do

FAS(vl, v,2,),lt + 1)

end for

i_" +-- h" + I::+l (u ''+1 - fi,,+l)

iJ" = Smooth(L,,, iF', f", u..,)

end if

The nmltigrid cycle is characterized by the number of pre and post-smoothing iterations (vl, v.,), and

2' wtfich sets the order in which the grids are visited. Depending on 7, the cycle is denoted by V(ua, v2) if

2, = 1 and t)y W(vl, u._,) if 7 = 2. We will also consider an F-cycle, which corresponds to an index between

the V and W-cycles, i.e. 1 < "_ < 2. In figure 3.1 the flowchart of the cycles used in this work are shown. In

general, a growing 2_ implies an increasing complexity [27, 24] and more smoothing sweeps on coarser levels

which harms the parallel properties of the cycle. However, low 7 cycles (i.e., V-cycles) are known to he less

robust than W-cycles, specially in convection dominated problems [18, 3]. This is one of the reasons why in

practice, F-cycles are often use(t as a trade-off between V and W-cycles. Note also that using semicoarsening

as defined subsequently, the storage requirement of the nmltigrid algorithm is twice that of the single grid

algorithm.

3.1. Restriction and Prolongation. Solution and residuals transfers are dictated by the staggered

arrangement of unknowns and the coarsening t)rocedure used. In the following we will consider a fine grid

_h defined by the nodes:

fih={xElR3:x=kh, k=(i,j,k), h=(i_.,Ibj, h:), i=0 .... ,n_,
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FI(;. 3.1. 5"theme of a V-cycle V(Ul,r'2) (left-hand chart) and an F-cycle F(ul,u2) where uo represents the number of

iterations of the smoother performed to solve the coarsest level

j=0,...,nu, k = 0, ..., n=, h_.=l/nx, h_=l/n_, h: =l/n:,},

and a coarse grid tb,+l obtained by semicoarsening fI'om Qt,. With senficoarsening there is only one direction

in which tit(' mesh space is doubled, let's say for example Hx = 2hx, H._ = h.v, H: = h: or equivalently

Nx = nx/2, N_ = 7_y, N: = r_:. Hence all Fourier nlodes in the y and z directions can be exactly represented

on _lh+l and the smoother has only to damp components of the error oscillating highly in the :r direction.

tt
The restriction operator Ih+ 1 in equation 3.2 is used to restrict vahles from the fine grid Q/, to the coarse

grid Qh+,. The component of the velocity parallel to the direction ill which the coarsening is performed is

transDred using injection, while the other two colnponents together with the scalar field art' restricted using

linear weighted interpolation:

(I_,+1 U)2ijk = llijk,

(Ih+lv _ (gx-v2_jk -_ ¢_3:+'l'gi+ljk)/'_x,h ]2ijk : . ,

(I__+1w).,ijt. = (£r-u,_/jk + _x+w._,i+ijk)/Sa',

(I_+aP)2ijt, = (_:r-p2ijk + _x+P2i+ljk )/_x,

_d" = X2i+2jk -- X2ijk (_X + ---- X2i+2j/.. -- X2i+ljk _3"-- -_- .I'2i+ljk -- X2ijk.

Vie [0,2_5.-1] Vj• [0, Xq-1] gk• [0, N:-I].

Note that because of the staggered arrangement of unknowns, the velocity component parallel to the coars-

ened direction is treated in a vertex-centered way, while the rest of the variables are transferred as cull-

centered.

The operator I_ '+1 in equation 3.4 is used to transfer data from a coarser grid t*h+l to the finer Cth. In

this case the prolongation is a weighted linear interpolation for the vertex centered variable:

(I/:+lu)'2ijk = 'tijk,

( Ih+ l ii )2i+ l jk = ( (_:r-Uijk -b 6X+ Ili+ l jk ) /_,T ,

,___;r_- x2i+ljk -- X2i_lj k (_X+ _ X2i+ljk -- :F2ijk 532-- _ :F2ijk -- Y2i-ljk,

Vi• [0,_,-1] Vj• [0,-h_-l] Vk• [0, N:-I].

The cell centered variables are treated using weighted linear interpolation, for exmnple, for the v component

of the velocity field we have:

(I_ '+1 t,)_ij_. = (0.5_Sa_'+'Uijk -l- (aa¢- + 0.5637 +)_,i_ljk )/,'.._2:

h+lo _ ---- ((6X + -}- 0.5(_./*-)Vijk -]- 0.5_X-t_'i-ljk)//-_Xth a)2i-ljk

"--_X = X2i+2jk -- :r2ijk (_X + -_ :l;2i+2jk -- X2i+ljk 53"- _ .r2i+ljk -- :r2ijk ,

Vi• [0, N_.-1] Vj•[0, Nu-1] Yk• [(),N:- 1].



When values outside tile computational domain are needed ill tile above set of fornmlas they are extrapolated

from tile inner nodes with the help of the I)oundary conditkm.

3.2. Smoothing Operator. Tile present at)preach rises a couI)le(l smoother where the momentum

and continuity equation are satisfied sinmltaneously. In particular, we have ('hosen a cell-implicit Symmetric

Cout)led Gauss Seidel (SCGS) method as the base of tile snmothing t)rocess. This smoother was introduced

t)y \hnka [25] an(t subsequently considered in [23, 16]. In the SCGS tile CV are scanned in some prescribed

order, then for each CV tire continuity and momentum equations are relaxed as follows:

1. The mass fluxes of the momentum equations for the six cell faces of the CV are calculated. Also in this

stage tile corrections made by the QUICK scheme are updated based on the current apt)roximation.

This is equivalent to a local Picard linearization. Considering implicitly only the diagonals of the

momentum equations afro1 those terms nmltiplying the t)ressure inside the CV, we can build the

following system:

( L,_)i.i_. 0

0 (L,_),+tjA

0 (I

0 (}

0 0

0 0

-1/ax 1/ax

(3.5)

0 0 0 0

0 0 0 0

(L:_)0_ 0 0 0

0 (L_)i._+lk 0 0

0 0 0 (L:_')ij_.+l

-11c5!! lliJy -i/a: l/&

1/&" uT,.,_ R,%_.

-1/a, "fii+,j_- R,_+,,k

1lay t'i, ,. RI) _.

-1/aU _'i,+,_" = RI)+_.

1/6z w,jl,. R,"SI,.

--l/aZ tt'i/k+l Riu)/,-+ 1

0 p,._A 0

where the R "''''w terins represents the contribution of the explicit variables.

2. The system 3.5 is easily solved using Gaussian elimination. A more implicit version of the system

(3.5) that includes off-diagonal elements in tile first six rows is also possible, which corresponds to

considering lint)licitly all the reDrences to unknowns inside the CV. However, tile convergence factor

is similar and the system is more expensive to solve than 3.5 [23, 16].

3. Tile velocity comt)onents an(1 the pressure of the CV are update(t using under-relaxation:

u "+l = u" + _'_(_ - _l")

P"+_ = P" + _v(P - P")"

In the following simulations the under-relaxation factors have been fixed as w v = 1.0 and 0;,, = 0.8.

However, in general the optimum values of a;, are strongly problem dependent and have to be set

empirically.

3.3. Plane Implicit Smoothers. The use of highly anisotropic grids is common practice in the field

of CFD. Grid nodes are usually concentrated in certain regions of the computational domain for accuracy

reasons or to capture small scale physical phenomena such as tile boundary layers mentioned before. In some

situations, when the direction of the anisotropies is known beforehand, the multigrid convergence can be

improved using an implicit smoother in tile direction of strong coupling of the unknowns [1]. These implicit

solvers have t)een widely studied in previous work in the sinmlation of the incompressible Navier-Stokes

equations, see for example [22, 19, 4, 5].

However, if the stretched grid generates aspect ratios whose relative magnitudes vary for different parts

of the computational domain, the nmltigrid techniques based on block-wise smoothers combined with full

coarsening fail to smooth error components [1, 27]. In these situations, the prot)lem can be effectively solved

with a block lint)licit smoother combined with semicoarsening. In particular, in the following simulations we



will use an z-semicoarsening (i.e., doubling mesh space only in tile z direction as explained in section 3.1)

combined with a xy-plane implicit solver.

From an architectural point of view, it is interesting to note that multigrid methods often reach a disap-

pointingly small t)ercentage of their theoretically available CPU perfornlance due to a limited cache reuse.

Some authors have successfully improved locality using different techniques such as data access transforma-

tions and data layout transformations [21]. Although we have not introduced any of these techniques, we

should remark that plane smoothers exploit blo(:king in an lint)licit way, whereas t)oint smoothers haa'e to

t)erform global sweet)s through data sets that are too large to fit in tile cache. Dest)ite not having discusse(l

cache memory exploitation in this paper, in a I)revious t)at)er [20] we have included a data reuse analysis for

a sinfilar robust multigri([ algorithm aI)plied to an anisotropic diffusion equation.

Block implicit smoothers are usually t)ased on a direct solver. These implementations take advantage of

the relatively small size of tile corresponding implicitly solved 1-D probh'm. The 3-D countert)art does not

present this 1)ossibility since the size of tile 2-D system is no longer small enough to consider a direct solver.

However, an exact direct solver for the planes is not needed, as has been shown in [13] for the 3-D Poisson

equation and in [19] for the incompressible Navier-Stokes equations. This consideration drastically reduces

the comtmtational cost of tile overall algorithm comt)ared to that of a direct t)lane solver.

In the present work, the planes will be at)proximately solved with a 2-D nmltigrid algorithm consisting

of one FAS V(1,1) cycle (see figure 3.1). The same kind of anisotrol)ies found in the 3-D prot)lem may

apt)ear in the 2-D system. Thus a robust nmltigrid algorithm is, again, necessary. In particular a cell-wise

SCGS smoother descril)ed in section 3.2 combined with semicoarsening has t)een found fiflly rot)ust for the

sinmlation of the yawed fiat t)late. However, for greater 2-D t)roblenl sizes _l point-wise smoother may not be

fillly rolmst, and an implicit line snloother or a greater 7 cycle should t)e used [3, 16]. The other components

of the 2-D nmltigrid cycle, such as the restriction and t)rolongation ot)erators or the smoothing process can

be easily deduced from those derived in sections 3.1 and 3.2.

X _

z_

Slab of cells.

Y

FIe:. 3.2. Slab of cells updated simultaneously when using the xy-plane implicit smoother.

The coupled philosophy of the SCGS will also be applied in tile plane solver. Tile plane smoother

simultaneously relaxes the momentmn and continuity equations of the (:ells included in the plane. Note that

the plane is understood as a slab of cells as shown in figure 3.2. Hence, all velocity components and pressures

contained within the plane will be updated at the santo time. Let us consider for example a yz-i)lane, for

which the procedure to solve tile 2-D problem on tile plane is as fi)llows:

1. The mass fluxes and second-order corrections of the 2-D system are computed based on the current

solution in the 1)lane. This step correst)onds to a global liimarization of the 2-D problent. Let us



define tile vector Xi that accouuno(lates tile variables for the whole plane of (:ells as:

X r = (u, u +, v, w, p) with

u = {u,jk : i = I, Vk, j e [O,n]},

v = {vijk : i = I, Yk,j e [0,,,]},

p = {p,jk : i = t, w.,j c [0,,,]}.

u + ={uijk : i=l+l, Vk, j E [O,n]},

w = {wij_, : i = I, Yk,j C [0,,,]},

The system of equations for tile plane can be written in terms of residuals and corrections as:

(3.6) Li AXi = ri,

where ri = fi - LiXi is the residual of the i th yz-plane and AXi = Xi ''+1 - X;' is the increment of

the solution.

2. SysteIn 3.6 is solved by applying one FAS V(1,1) multigrid cycle as explained before. In the following

sinnflations tile coarsest level is solved with 10 iterations of the smoothing process (v0 = 10).

3. The solution in the plane is updated via ullderrelaxation:

X; '+_ = X;'+w_X_,

= (Wu,_'u,aJu,_'u,_p),

where w,, an(t wv are the underrelaxation factors for the velocity and pressure field defined in section

3.2.

Many types of plane smoothers can be easily constructed by defining a specific ordering of the planes.

It is imt)ortant to note that the second order operator extends the stencil to the planes i, i + 1 and i 4- 2

depending on the direction of the flow. Ill order to avoid these del)endencies, the construction of tile smoother

can be based on a four color ordering of planes (see figure 3.3). Because a four color smoother should t)e

used as tile basis of a parallel implenmntation, the behavior of this smoother will t)e analyzed and compared

t¢) the sequential lexicographic order in section 4.

Lexicographic Four Colors

FIG. 3.3. Planes orderings for the implicit plane smoother.

4. Numerical Experiments. We consider a cascade of square plates of side L as shown in figure

4.1. In particular, we assume that the leading edge of tile plate is t)laced at a distance L froln the inflow

plane of the computational domain. The outflow boundary is situated at 2L after the trailing edge. The

boundary conditions are defined as follows: on the west face of the computational domain we prescribe

a inflow conditions consistent with some angle of yaw (O). The north and south faces satis_" a periodic

boundary condition. In order to assure periodicity in the y direction, we will only consider angles of yaw

such that there is no interaction between the wakes of the plates. The largest angle of yaw studied in this

work will be O = 45 °. For this situation the wake of tile plates (llull < 1) at z = 0 has been shaded in figure



4.1. Periodicity in tile y direction is clearly shown for this case, and also therefore for the angles 0 ° < 0 < 45 °

use<l in the following simulations. Note that for O = 0 ° tile periodic boundary condition reduces to synunetry

on the north and south boundary. On the plate we impose a no-slip condition while the top aim bottonl

faces will hohl symmetric boundary conditions.
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Computed Eomain

FI(;. 4.1. Schematic cortfiguration of the numerical experiments (left-hand chart). Periodicity Zn y-dir_ection for the

simulation of a flat-plate at 0 = 45 ° the shaded area corresponds to the wake of each plate.

The treatment of the outflow needs a closer a look since we need to apply a proper t)oundary condition

in tile wake region. For the main stream flow we can impose a zero gradient of the velocity fieht in the X

direction:

OU 01" OW

(4.1) ON OX OX O.

However these equations are not valid ill tile wake of tile I)late an(t need to be improved. In inost cases, the

flow in the wake of a plate is turbulent. For Re < 106, under carefully controlled conditions, tile boun(tary

layer can remain laminar past the trailing edge. However because the veh)('ity profiles in tile wake have a

point of inflexion, tile wake usually becomes turbulent away from the trailing edge. In this work we will

confine Re < 10 _ and assume that the wake remains laminar at a distance of 2L behind the trailing edge.

For the wake region, the outflow boundary ('ondition will be derived using Goldstein's calculations of the

velocity distribution in the wake of a finite 2-D fiat plate [11]. Hence, in order to aI)ply the t)roper I)(mndary

conditions, it is important to set the wake bounds. We will assume that the wake region has a negligible

thickness, beyond the width of the plate, L/cos(O), in the y direction (?_y _ 0), see figure 4.2. The estimation

of the thickness in the z direction is based on the numerical values [11] of the veh)city in the wake at a given

distance behind the plate. In particular, with the outflow placed at 2L after the trailing edge of the plate,

and fixing the wake limit where Ilull = 0.999, for a Reynolds nulnber of 104, it is foun(I that ?i._: _ 0.1L.
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Fit;. 4. '). Wake dimen_'ions of the plate at zero angh! of yaw

We will first consider the plate at zero angle of yaw. Tile gradient of the velocity component t)aralM to

the inflow velocity, and that perpendicular to the plate, will be improved using Goldstein's calculation for

the 2-D plate. The notation introduced in [11] will be reproduced here in order to clarify the subsequent

oxpressions:

ReL = U_,L/u

D = L32Spt, aL/_

nD= D/p[ g,::d

A = ).3'_S/4v_

d= 4L

X,Z

[r,lI"

.r = X/d, z = (U_d/u)_/'-'Z/d

: tleynolds number based on the plate length

: Viscous drag coefficient fioIn Blasius theory

: dimensionless drag coetficient

: Constant of integration

: representative length of the plate

: 2-D Cartesian coordinates

: Dimensional 2-D velocity field

: dimensionless coordinates

, 1/'_, -u = U/U_, u, = ([_:d/u) II/b_ : dimensionless component.s of the velocity field

In what follows we will ()Ill,'," need the component of the velocity perl)endieular to the plate which can

be written with a second order approxinmtion as:

,/t- _gl ('_) -}- (,(]2(7])+o02(7]) Jr" _]2(?1)) "I-(4.2)

where:

gl (7/) = */e-½'l_;

_/-_8(1 ., _ _£ . 71 .g2(7/) =,. -_1)_ - e'f(T_),

g:_(q) = - qe- ,c ;

(4.3) .q4('/) = - V/(n)ert'(q) -

The gradient of U in the X direction, will be calculated in terms of the derivative of w with respect, to

z. With the help of the mass conservation equation we can express the U derivative as:

OU Ou, O?l.

OX d 011 Oz'

10



{4._) a,,.a,_ a .t [ 2 ]a,_ o: _ql" + _ .4 (.¢,,, * .¢_,,+ ._2,) +

where the functions g,rt are:

(4.5)

•q',l - (1 - qe)e-i'd;

{' 2rl 2.(t2,1 "-_ r I]

o

z r) "}.q:}, (,q" -- 1)¢ "-;

f]l_l 2c- rt"

Although expr{,ssion 4.1 is probably a good outflow condition for the W-c{mq}on{'nt we {'an get a better

representation of the gradient using the derivative of expression 4.2 with respect to X, that can be written

a s:

(4.o)

where.

0. [o,c o,,1
ox " 2d_ Lar _ N_J"

Orl _1
-- _ _--.

Ox 2x "

.4 a.4 [ 2.]- .-_...,._,,1 .4(oe(_l) + oa(_) + .9,(,1)) -_ _](1.7) Ox (2.c) _/-' (2.r) 5/2

The benefits of the boundary.' conditions that we have just derived are clearly shown in figure 4.3. In this

figure, the pressure contour lines at z = 0 have been plotted for two different simulations with 8 = 0 ° and a

Reynolds number of 1{}0{}0. In the right-hand chart the boundary condition 4.1 has been used for the whole

outflow boundary'. At the outflow, in the wake of the plate, there is a region of a favorable pressure gradient

that accelerates the velocity at the outlet in order to match the wrong outflow condition. In the left-hand

chart the boundary conditions 4.4 and 4.6 have been used in the wake region combined with 4.1 outside the

wake. As a result of this boundary condition the low pressure zone in the wake of the plate disappears.

/ _u

p 003_ 0015 0010 3034 0058 0083 0'07 0t32

Ulnt

)

_ ,59}

o &

_ '_ _ _ ii

FIG 13. Pre_'surc contour lines at z=O for a Reynolds number of I0000 usmfl a zero gradtent wake condition (r_ght-hand

cha_t) and the: impr,_v_:d boundary conditwn (left-hand chart) fm 0 : {}o
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The solution is verified by comparing the u-velocity in the middle of the plate with the Blasius analytical

solution for a 2-D plate (figure 4.4). The low discrepancy near the layer edge is due to the highly stretched

grid used in this simulation. The spatial convergence of the viscous drag coeificient Dy versus the nominal

grid spacing for a set of grids with an increasing number of points in the z direction (regular spacing) is

shown in figure 4.4, where:

(4.8)
f_ OuD f = p-_z _=odS

late

Second order accuracy is clear; the coefficient converges to a value approximately 3% lower (Df = 0.020455)

1.32s _ 0.02099). It is interesting to note that thethan the one predicted I)y the Blasius theory (Dy =

accuracy obtained with tim 128x 24 x 32 grid is the same as that obtained with the 32 x 24x32 stretched grid,

with the conse(tuent saving in coml)uting time.

1.2

1

0.8

0.6

0.4

0.2 ,

0 f ,

0 1

/
/

i'
/

f

Simulation

Blasius Theory ...........

ho=1/128 --*

//

//-

/

,/
./

/

j"

i"
.-/

0.026

0.025

0.024

_, 0.023

0.022

0.021

0.02

0

J i , L I L ,

2 3 4 5 6 7 8 2 4 6 8 10 12 14 16

Scaled Coordinate y Scaled Mesh Space (h/ho)^2

F']G. 4.4. Simulation comparison with Blasius theory at the middle of the plate with Re = 10 4 (left-hand chart). Conver-

gence of the viscous drag versus nominal grid spacing (right-hand chart).

When the inflow is at some angle of yaw, the outflow-wake boundary conditions are approximated by

rotating the zero yaw angle solution. This approximation is only valid for moderate angles of yaw, given that

the characteristics of the problem do not diverge too much from the main stream. However, in a general

situation for larger angles of yaw, such as those considered below, this assumption is no longer valid. The

effect of the rotated outflow conditions on the plate has been checked by running a case with the outflow plane

further out. The flow field over the plate is not perceptively affected by the rotated boundary conditions.

In fact, when comparing both results the difference in the flow over the plate has been found to be below

the 2%. If we define (x', y', z') as a frame rotated by the angle of yaw O, and, if (u', v', w') are the velocity

components in the (x _,y_, z _) frame we have:

(4.9)

Iu = ,u cos c_+ v' sin c_

V = --U I sin OL Jr- v t COS Ct

w _ w t

Now, the gradients OU/OX and OW/OX can be easily obtained from equation 4.9. Note also that at yaw,

the effective length of the plate changes and so equation 4.2 has to be modified to take this into account.

In figure 4.5 the drag coefficient versus the angle of yaw is shown for the 64x48x64 grid with a Reynolds

number of 104. In this case, the contribution from the u and v compoimnts of the velocity field have to be

12
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[gig 15. VZa'cou_ Drag coeJ,[icicnl ta!r_'u_ d_c angb! of yaw for a 6.1 × 18x61 _trctcla'd glad al /,/e = 10 _.

taken into account in the shear stress vector:

t 0,,)(1.10) D/ = p cos c_ + sin & dS.

This integral is computed with second order accuracy using ttw midpoint rule. where the derivativ_,s are

approximated with a three point formula. The pressure contours at : = 0 for two different angles of yaw

(0 = 20 ° and 0 = 45) are shown in figure 4.6. For tlwse cases, the pressur(, gradients in the wake of the

plates at the outflow can also be seen. However. the magnitude of these gradients are small compared to

those that appear at 0 1)' and the zero gradient boundary condition for the wake of the plate.

11!I _t[ II
# 0,039 ,2315 ),215 _,354 3'27_ )':J2 ,3!27 ,)!5t k_ ,9,2,39-0015 '3,344 :_,)68 ,2f93 ,11'7 3!41
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Uint _,_ Ulnf //

f.

0 0148248

000321632

,::: i % °% v,
o "._,,,,_,,__ % %

° ""%: ,',dr,;'_: g

ooaz2aaa _@@_@_

0 OO43

ca

00

%

g
o a,

@

F[(;, 1.6. l'r_,_urc .onlou* linch' at z 0 fo_ a l_gnohl,_ mambeT of IOOO0 flJt 0 20'" (lcft-h, aTM chart) aml 0 15 °

(rzght-hand chart).

In ord_'r to capture the viscous effects, tlw grids used in this work are highly str_,tched near the plate.

Moreover. the grids are refined (geometrically stretched, see below) near the plate edges to reduce the large

discretization errors in those zones as advocated I)3' Thomas et al. [22j (see for example figure 4.3). The

simulations have been performed over two different grids of dimensions: 32 x 24 x 32 and 61 x 18 x 6.1. These

grids use a stretching ,)f the form hr. _ I =: 3hk, the stretching factor 3 being equal to 1.3 and 1.2 respectively.

It is interesting to note that, in order to keep the he solution accuracy the stretching factor should be

3 1 _rO(h). In the following simulations the n_ltn})er of multigrid levels has ])een fixed s,) that thv coarsest

level has I planes.
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Figure 4.7 shows tile L2-norm of the residual versus F(2,1)-cycles with an xy-plane implicit smoother

conlbined with Z semicoarsening for several angles of yaw and two different smoothers. The residual norm

is reduced by four orders of magnitude in tile first five cycles in the finest grid ill all cases (corresponding

to a convergence rate of roughly 0.1 per fine grid iteration). This average convergence rate is close to that

ot)taine(t for the 3-D Poisson equation using a plane implicit smoother (:ombined with semicoarsening [17].

Moreover, the convergence rate is also independent of the angle of the non-aligmnent parameter for angles

0o < _ < 45 °.
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FI(;. 4.7. L,e-norm of the average residual versus F(2,1)-cycles with an xy-plane implicit smoother combined with z

sem_coarsening with a lexicogT_aphic (Lx) and a four-color (Fc) ordering of planes, and several angles of yaw. The Simulation

was perfoTwted on a 32×2,1×32 grid and a Reynolds number" of l04.

Figure 4.8 shows the L2-norm of the residual versus F(2,1)-cycles for a 64 x 48 x 64 grid. The residual

norm in this ease is also reduced by four orders of magnitude in the first five cycles in the finest grid in

all cases. Thus, the combination of plane-implicit smoothers with semicoarsening considered here exhibits

a textbook convergence rate, i.e., independent of the problem size, grid stretching factor and angle of yaw.

Although this problem is a convection-donfinated non-aligned flow for which multigrid schemes might have

convergence difficulties, we do not experience these difficulties for the grids and Reynolds numbers used.

However in a general situation an explicit coarse-grid correction of cross-characteristic components may be

needed (see for example [8]). Moreover, when using a four-color smoother the efficiency of the algorithm is

not reduced. This result enables a viable parallel implementation of the nmltigrid algorithm studied.

_,_ have studied the case of Re = 105 and have obtained a convergence rate of 0.2 and a drag coefficient

within 5% of that predicted by the Blasius solution. The results indicate that a finer mesh is n_ded to

improve the accuracy of the results. This will be the subject of further studies that would exploit the
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FIG. 4.8. L2-norm of the average residual versus F{2,1)-cycles with an :rfl-plane implicit smoother combined with z

semicoarsenin9 with. a lexicographic (Lz) and a four-color (IS'c) orderin 9 of planes and several angles of yaw. The Simulation

was p_!r'forrned on a 61 x 48 x 61 grid and a l_eflnolds number of 101.

parallel properties of the algorithm.

5. Conclusions. A nmltigrid algorithm to solve the incompressible 3-D Na_,ier-Stokes equations with

severely stretched grids and non-aligned flows has been presented. The core of the multigrid algorithm is

a coupled plane-implicit solver combined with semicoarsening. The plane solver used is also a robust 2-D

multigrid algorithm based on a cell-implicit smoother combined with semieoarsening. This plane smoother

has been found fully robust for the problem sizes covered in this work. Textbook nmltigrid convergence has

been demonstrated for the simulation of a yawed flat plate boundary layer. That is, the convergence rate is

independent of the grid size, grid stretching factor and the angle of yaw. Moreover, this convergence factor

has been found to be close to the value expected for elliptic equations. A parallel variant of the smoothing

process based in a four-color ordering of planes has also been analyzed. The c(mvergence rate does not

deteriorate in this situation, achieving TMC for the parallel smoother. The outflow boundary treatment has

been discussed in depth in this report. The code has been validated with Blasius theory and an accurate

measurement of the viscous drag coefficient has been obtained by exploiting the robustness of the solver.
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